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Abstract
In this paper, Levitin–Polyak (in short LP) well-posedness in the set and scalar
sense are defined for a set optimization problem and a relationship between them
is found. Necessary and sufficiency criteria for the LP well-posedness in the set sense
are established. Some characterizations in terms of Hausdorff upper semicontinuity
and closedness of approximate solution maps for the LP well-posedness have been
obtained. Further, a sequence of solution sets of scalar problems is shown to converge
in the Painlevé–Kuratowski sense to the minimal solution sets of the set optimization
problem. Finally, the perturbations of the ordering cone and the feasible set of the set
optimization problem are considered and the convergence of its weak minimal and
minimal solution sets in terms of Painlevé–Kuratowski convergence is discussed.

Keywords Set optimization · Levitin–Polyak well-posedness · Painlevé–Kuratowski
convergence · Stability

Mathematics Subject Classification 49J53 · 49K40 · 90C31 · 90C48

1 Introduction

Set optimization is an important generalization of vector optimization problems. It
has wide applications in several areas such as mathematical finance, game theory,
duality principles, multiobjective optimization, gap functions for vector variational
inequalities, fuzzy programming, welfare economics (see [2,8,15] and the references
therein). To find the optimal solution of set optimization problem, two well known
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solution criteria are considered namely vector criterion and set criterion (see [13,15,
23]). Vector criterion is a generalization of solutions of vector optimization problem
whereas the set criterion is based on minimal elements obtained using quasiorders on
image sets of the objective function map. Set criterion have been used throughout this
paper.

Well-posedness of an optimization problem means that the variables whose objec-
tive function values are close to the optimal value ultimately lie close to solution
of the problem. It plays an important role in the study of sensitivity and stability of
optimization problems. Tykhonov [25] was the first to introduce well-posedness for
scalar optimization problems which was based on the idea of minimizing sequences
converging to the unique solution of the problem. In this approach, the minimizing
sequences are required to stay in the feasible region of the problem which need not
be always true. To overcome this limitation, Levitin and Polyak [19] extended this
concept of well-posedness where the minimizing sequences could also lie outside the
feasible set but required their distance from it to approach zero, this well-posedness
is termed as Levitin Polyak well-posedness. In literature, these concepts have further
been extended for vector optimization problems by many authors (see [3,21,24] and
the references therein). Chatterjee and Lalitha [3] studied LP well-posedness for a
vector optimization problem in both the vectorial and scalar sense and obtained a link
between them. They established some sufficient conditions for LP well-posedness
and discussed some stability aspects of the vector optimization problem.

Well-posedness for set optimization problems have also been explored exten-
sively and various notions of well-posedness have been defined and studied by many
researchers (see [4–6,9,10,16,28] and the references therein). This study was initiated
by Zhang et al. [28] where various types of well-posedness in set optimization have
been defined and certain characterizations for them have been obtained. Later, Crespi
et al. [5] proposed a global notion of well-posedness which generalized one of the
notions of well-posedness given by Zhang et al. [28]. Khoshkhabar [16] extended
the concept of well-posedness given in [28] by introducing the concept of general-
ized LP well-posedness and obtained few characterizations of this newly defined
well-posedness in terms of closedness and upper semicontinuity of an approximate
solution mapping. Vui et al. [26] introduced different kinds of LP well-posedness for
set optimization problems by considering various types of set order relations. They
investigated some necessary and sufficient conditions for these LP well-posedness
and established characterizations for these concepts via Kuratowski measure of non-
compactness. It has been observed that these well-posedness are suitable only for
solid optimization problems as the ordering cone is required to have nonempty inte-
rior. This is a limitation because there exist optimization problems in literature where
the ordering cone has an empty interior. Such problems are known as nonsolid opti-
mization problems. To overcome this shortcoming, recently Gupta and Srivastava [6]
introduced different types of well-posedness for set optimization problems which can
be used for both solid and nonsolid optimization problems and have obtained their
necessary and sufficiency criteria. Using generalized oriented distance function [27],
they established some scalar equivalences of these well-posedness.

The study of stability of an optimization problem has a significant role in opti-
mization theory. Many authors have studied stability aspects of vector optimization
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problems by taking into account the perturbations of the ordering cone, the feasible
set and the objective function (see [18,20,22] and the references therein). Luc et al.
[22] investigated the convergence of the solution sets of perturbed vector optimization
problems in the sense of Painlevé–Kuratowski convergence when both the ordering
cone and the feasible set are perturbed. Li et al. [20] established some stability results
of a vector optimization problem by considering the perturbation of the ordering cone,
the feasible set and the objective function. The study of stability analysis pertaining to
perturbations of the data has been investigated by some authors in the area of set opti-
mization (see [7,10,14]). Gutiérrez [7] considered the perturbation of the feasible set
and established external and internal stability of the solution sets of a set optimization
problem by using the notion of Hausdorff and Painlevé-Kuratowski set convergence.
Later, Karuna and Lalitha [14] improved some results of [7] by establishing external
and internal stability in both the image space as well as in the given space.

Motivated by the above work, in this paper we introduce a type of LP well-
posedness in the set sense and scalar sense for a set optimization problem and a
link is established between them. Some necessary and sufficient conditions have been
obtained for these LP well-posedness by invoking Painlevé-Kuratowski set conver-
gence and u-domination property, respectively. A few characterizations of these LP
well-posedness have also been established through appropriate solution maps. Here,
it is important to note that these LP well-posedness are independent of the non empti-
ness of the interior of the ordering cone and hence can be used in both solid and
nonsolid optimization. Further, the Painlevé–Kuratowski convergence of the sets of
optimal solutions of scalar problem which is defined by using generalized oriented
distance function [27] to the set of minimal solutions of the set optimization problem
is given. Finally, the stability of the set optimization problem is investigated firstly, by
taking into account the perturbations of the ordering cone and then perturbations of
both the ordering cone and the feasible set where the ordering cone is assumed to have
nonempty interior. The Painlevé-Kuratowski convergence of a sequence of minimal
solution sets of perturbed problems to theminimal solution sets of the original problem
have been studied. Some of these results generalize the corresponding results of [3]
from the vector optimization setting to the set optimization case.

2 Preliminaries

Assume that X and Y are real normed spaces and L is a convex closed cone in Y . Let
B(0, ε) denote an open ball with center origin and radius ε > 0 in the relevant spaces
X and Y , Mc the complement of a set M and P(Y ) = {M ⊆ Y : M �= ∅}.

Throughout, we consider the following upper set-relation on P(Y ) [17]. For any
M, N ∈ P(Y )

M �u
L N ⇔ M ⊆ N − L.

We say that

M ∼u N ⇔ M �u
L N and N �u

L M .
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Consider a set-valued map F : X ⇒ Y . We denote by dom F the set {x ∈ X :
F(x) �= ∅}.

Now, we recall few basic definitions.

Definition 2.1 [6] A set M ∈ P(Y ) is called (−L)-closed and (−L)-proper if M − L
is closed and M − L �= Y , respectively.

Definition 2.2 [6] For a nonempty set A ⊆ X , the mapping F is called

(i) (−L)-closed-valued on A if for each x ∈ A, F(x) is (−L)-closed.
(ii) (−L)-proper-valued on A if for each x ∈ A, F(x) is (−L)-proper.

Definition 2.3 [15] The mapping F is called

(i) upper semicontinuous (u.s.c.) at x̂ ∈ X if for every open set V in Y with F(x̂) ⊆
V , there exists a neighbourhood W of x̂ such that for every x ∈ W , F(x) ⊆ V .

(ii) lower semicontinuous (l.s.c.) at x̂ ∈ X if for every open set V in Y with F(x̂) ∩
V �= ∅, there exists a neighbourhood W of x̂ such that for every x ∈ W ,
F(x) ∩ V �= ∅ .

(iii) Hausdorff upper semicontinuous (H-u.s.c.) at x̂ ∈ X if for any neighbourhood
U of 0Y , a neighbourhoodW of x̂ can be found such that F(x) ⊆ F(x̂)+U , for
every x ∈ W .

(iv) closed at x̂ ∈ X if for any sequence ((xn, yn)) in graph F = {(x, y) ∈ X × Y :
y ∈ F(x)} which converges to (x̂, ŷ) implies that ŷ ∈ F(x̂).

The map F satisfies a property on a nonempty set A ⊆ X if it satisfies that property
for every point in A.

The following sequential criterion of upper and lower semicontinuity will be used.

Theorem 2.1 (i) [15] If x̂ ∈ X and F(x̂) is compact, then the mapping F is u.s.c.
at x̂ if and only if for any sequence (xn) ∈ X which converges to x̂ and for any
yn ∈ F(xn), there exists a subsequence (ynk ) of (yn) with ynk → ŷ ∈ F(x̂).

(ii) [1] The mapping F is l.s.c. at x̂ ∈ X if and only if for any sequence (xn) ∈ X
which converges to x̂ and for any ŷ ∈ F(x̂), there exists a sequence (yn) ∈ F(xn)
which converges to ŷ.

Now, we recall the following definition of covergence of a sequence of sets.

Definition 2.4 [15] Let (Mn) be a sequence of sets in X . Let

Li Mn = {x ∈ X : xn → x, xn ∈ Mn, for sufficiently large n},
Ls Mn = {x ∈ X : xnk → x, xnk ∈ Mnk , nk is an increasing sequence of integers}.

We say that (Mn) converges to M ⊆ X in the sense of Painlevé-Kuratowski conver-
gence if Ls Mn ⊆ M ⊆ Li Mn . The relation Ls Mn ⊆ M is referred to as the upper
part of the convergence and the relation M ⊆ Li Mn is referred to as the lower part of
the convergence.
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Definition 2.5 [12] The oriented distance function �M : Y → R ∪ {±∞} is defined
as

�M (y) = d(y, M) − d(y, Mc), y ∈ Y ,

where M ⊆ Y and d(y, M) = infm∈M ‖y − m‖. If M = ∅ then d(y,∅) = +∞.

ForM ⊆ Y , we consider a generalizationDM : P(Y ) → R∪{±∞} of the oriented
distance function �M , introduced in [27], defined as follows:

DM (N ) = sup
n∈N

�M (n), N ∈ P(Y ).

We refer the following lemma from [6].

Lemma 2.1 Let N ∈ P(Y ), M be a closed set in P(Y ) and r ∈ R. Then the following
hold:

(i) N ⊆ r B̄ + M if DM (N ) ≤ r;
(ii) DM (N ) ≤ r if r ≥ 0 and N ⊆ r B̄ + M;

where B̄ is a closed unit ball in Y .

Now, the following constraint set-valued optimization problem (PL,A) is consid-
ered.

(PL,A) minL F(x)

subject to x ∈ A

where A is a nonempty set in X .

Definition 2.6 [17] An element x̂ ∈ A is called a u-minimal solution of (PL,A) if
x ∈ A, F(x) �u

L F(x̂) ⇒ F(x̂) �u
L F(x). Let the set of all u-minimal solutions be

denoted by MinL(A, F).

Throughout the paper, it is assumed that MinL(A, F) �= ∅. We remark that, if x̂ ∈
MinL(A, F) and x is an element of A such that F(x) �u

L F(x̂), then x ∈ MinL(A, F).
Consider the following scalar optimization problem:

(P) min DF(v)−L(F(x))

subject to x ∈ A

where v ∈ MinL(A, F). Let argmin(A,DF(v)−L◦F)be the set of allminimal solutions
of (P).

A link between minimal solutions of (PL,A) and (P) is recalled from [6].

Theorem 2.2 [6] Let v ∈ MinL(A, F), F(v) be (−L)-proper and (−L)-closed set.
Then argmin(A,DF(v)−L ◦ F) ⊆ MinL(A, F) and the converse inclusion hold pro-
vided F(y) ∼u F(v), for every y ∈ MinL(A, F).
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Lemma 2.2 [6] Let v ∈ MinL(A, F), F(v) be (−L)-proper and (−L)-closed set.
Then DF(v)−L(F(x)) ≥ 0, for every x ∈ A.

We next recall u-domination property from [11].

Definition 2.7 The problem (PL,A) satisfies the u-domination property if for every
x ∈ A, there exists x̂ ∈ MinL(A, F) such that F(x̂) �u

L F(x).

3 LP well-posedness of (PL,A)

In this section, LP well-posedness is introduced for (PL,A) in both the set sense
and scalar sense. A Relationship between them is established. Further, necessary and
sufficient conditions are established for the LP well-posedness in the set sense.A com-
parison is drawn between the LP well-posedness in the set sense and the generalized
LP well-posedness defined in [16].

Definition 3.1 A sequence (xn) ∈ X is called a LP minimizing sequence for the
problem (PL,A) in the set sense if there exists a real sequence (εn), εn ≥ 0, εn → 0
as n → +∞ and vn ∈ MinL(A, F) such that xn ∈ A + B(0, εn) and F(xn) �u

L
F(vn) + εn B̄ for all n.

Definition 3.2 Theproblem (PL,A) is called LP well-posed in the set sense if every LP
minimizing sequence (xn) for the problem (PL,A) in the set sense has a subsequence
(xnk ) such that d(xnk ,MinL(A, F)) → 0.

Remark 3.1 The above Definition 3.2 of LP well-posedness defined for (PL,A)
extends the idea of generalized well-posedness defined in [6] by allowing minimizing
sequences to lie outside the constraint set A.

Clearly, F(xn) �u
L F(vn) + εn B̄ ⇔ DF(vn)−L(F(xn)) ≤ εn provided F is (−L)-

closed-valued on MinL(A, F).
Motivated by this fact and Definitions 3.3 and 3.4 of [3], we define the following

notion of LP well-posedness in the scalar sense.

Definition 3.3 A sequence (xn) ∈ X is called a LP minimizing sequence for the
problem (PL,A) with respect to (vn) ∈ MinL(A, F) in the scalar sense if there
exists a real sequence (εn), εn ≥ 0, εn → 0 such that xn ∈ A + B(0, εn) and
DF(vn)−L(F(xn)) ≤ εn .

Definition 3.4 The problem (PL,A) is called LP well-posed in the scalar sense if for
every LP minimizing sequence (xn) for (PL,A) with respect to (vn) ∈ MinL(A, F)

in the scalar sense, there exist subsequences (xnk ) of (xn) and (vnk ) of (vn) such that
vnk → v̂ and xnk → x̂ for some x̂ ∈ argmin(A,DF(v̂)−L ◦ F).

The following example illustrates these definitions.
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Example 3.1 (i) Let X = R, A = [0, 1] ⊆ R, Y = R
2 and L = R

2+ ⊆ R
2.

Consider F : X ⇒ Y defined as

F(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(|x |, 1) − R
2+, if x < 0,

(0, 1) − R
2+, if x = 0,

(1, 1) − R
2+, if 0 < x < 1,

(0, 1) − R
2+, if x = 1,

(x − 1, 1) − R
2+, if x > 1.

Here, MinL(A, F) = {0, 1}. Clearly, (PL,A) is LP well-posed in the scalar
sense.

(ii) Let X = R, A = [0, 2] ⊆ R, Y = l2 and L = l2+ ⊆ l2. Consider F : X ⇒ Y
defined as

F(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2, 0, 0, . . .) − l2+, if x < 0,

(0, 5, 0, 0, . . .) − l2+, if 0 ≤ x ≤ 1,

{(xn) ∈ l2 : 0 < x1 ≤ 1}, if 1 < x < 2,

(0, 5, 0, 0, . . .) − l2+, if x = 2,

{(x − 2, 4, 0, 0, . . .)}, if x > 2.

Here, MinL(A, F) = [0, 1] ∪ {2}. It is observed that (PL,A) is LP well-posed
in the set sense.

(iii) Let X = R, A = [0, 2] ⊆ R, Y = l2 and L = l2+ ⊆ l2. Consider F : X ⇒ Y
defined as

F(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(2, 0, 0, . . .) − l2+, if x < 0,

(0, 5, 0, 0, . . .) − l2+, if 0 ≤ x ≤ 1,

{(xn) ∈ l2 : 0 < x1 ≤ 1}, if 1 < x ≤ 2,

{(x − 2, 4, 0, 0, . . .)}, if x > 2.

Then, MinL(A, F) = [0, 1]. We observe that (PL,A) is neither LP well-posed
in the set sense nor LP well-posed in the scalar sense.

We now prove a relationship between LP well-posedness in the set sense and scalar
sense.

Theorem 3.1 Suppose thatMinL(A, F) is compact and F is (−L)-proper-valued and
(−L)-closed-valued on MinL(A, F). If (PL,A) is L P well-posed in the scalar sense
then it is L P well-posed in the set sense. The converse holds provided F(u) ∼u F(v),
for all u, v ∈ MinL(A, F).

Proof Suppose that (PL,A) is LP well-posed in the scalar sense and (xn) ∈ X is a LP
minimizing sequence for (PL,A) in the set sense. Then, there exist εn ≥ 0, εn → 0 and
vn ∈ MinL(A, F) such that xn ∈ A+B(0, εn) andDF(vn)−L(F(xn)) ≤ εn . Thus, (xn)
is a LP minimizing sequence for (PL,A) with respect to (vn) in the scalar sense and
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therefore there exist subsequences (xnk ) of (xn) and (vnk ) of (vn) such that vnk → v̂

and xnk → x̂ for some x̂ ∈ argmin(A,DF(v̂)−L ◦ F). It follows from Theorem 2.2
that x̂ ∈ MinL(A, F) which further implies that d(xnk ,MinL(A, F)) → 0. Hence,
(PL,A) is LP well-posed in the set sense.

Conversely, suppose that (xn) ∈ X is a LP minimizing sequence for (PL,A) with
respect to (vn) ∈ MinL(A, F) in the scalar sense. Then, there exist εn ≥ 0, εn → 0
such that xn ∈ A + B(0, εn) and DF(vn)−L(F(xn)) ≤ εn . This implies that (xn) is a
LP minimizing sequence for (PL,A) in the set sense. AsMinL(A, F) is compact, there
exists a subsequence (vnk ) of (vn) such that vnk → v̂ for some v̂ ∈ MinL(A, F). Since
(PL,A) is LP well-posed in the set sense, therefore there exists a subsequence (xnkl )
of (xnk ) such that d(xnkl ,MinL(A, F)) → 0. From the compactness of MinL(A, F)

and Theorem 2.2, it follows that there exist a subsequence (x ′
nkl

) of (xnkl ) and x̂ ∈
argmin(A,DF(v̂)−L ◦ F) such that x ′

nkl
→ x̂ . Hence, (PL,A) is LP well-posed in the

scalar sense. ��

Remark 3.2 (i) Theorem 3.1 is a generalized version of Theorem 3.2 of [3] in set-
valued setting.

(ii) In example 3.1 (i), MinL(A, F) is compact and F is (−L)-proper-valued and
(−L)-closed-valued on MinL(A, F). Also, (PL,A) is LP well-posed in the scalar
sense. Therefore, from Theorem 3.1 it follows that (PL,A) is LP well-posed in the
set sense.

(iii) In example 3.1 (ii), MinL(A, F) is compact and F is (−L)-proper-valued and
(−L)-closed-valued on MinL(A, F). Also, F(u) ∼u F(v), for all u, v ∈
MinL(A, F) and (PL,A) is LP well-posed in the set sense. Therefore, applying
Theorem 3.1, (PL,A) is LP well-posed in the scalar sense.

The following example justifies that the converse of Theorem 3.1 may not hold in
the absence of the condition F(u) ∼u F(v), for all u, v ∈ MinL(A, F).

Example 3.2 Let X = R, A = [0, 1] ⊆ R, Y = R
2, L = R

2+ ⊆ R
2. Consider

F : X ⇒ Y defined as

F(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{(1, 1)}, if x < 0,

(0, 1) − R
2+, if x = 0,

(1, 1) − R
2+, if 0 < x < 1,

(1, 0) − R
2+, if x = 1,

(x − 1) − R
2+, if x > 1.

Here, MinL(A, F) = {0, 1}. Clearly, F(0) �
u F(1) and all other conditions of

Theorem 3.1 are satisfied. We observe that the problem (PL,A) is LP well-posed in
the set sense but not LP well-posed in the scalar sense.

We now obtain sufficiency and necessary criteria for the LP well-posedness in the
set sense.
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Theorem 3.2 Suppose that A is a compact set. If F is l.s.c on A \ MinL(A, F) and
(−L)-closed-valued on MinL(A, F), (PL,A) satisfies u-domination property and

F(u) ∼u F(v), for any u, v ∈ MinL(A, F), (1)

then the problem (PL,A) is L P well-posed in the set sense.

Proof Suppose that (xn) is a LP minimizing sequence for (PL,A) in the set sense.
Then, there exist εn ≥ 0, εn → 0 and vn ∈ MinL(A, F) such that xn ∈ A+ B(0, εn)
and

F(xn) ⊆ F(vn) + εn B̄ − L. (2)

Since A is compact, therefore there exist a subsequence (xnk ) of (xn) and x̂ ∈ A such
that xnk → x̂ . If x̂ ∈ MinL(A, F) then d(xnk ,MinL(A, F)) → 0.

If x̂ /∈ MinL(A, F) then there exists a point x ∈ A such that F(x) �u
L F(x̂)

but F(x̂) ��u
L F(x). Using u-domination property of (PL,A), there exists a point

v ∈ MinL(A, F) such that F(v) �u
L F(x) which further implies that F(v) �u

L
F(x̂). Also, F(x̂) ��u

L F(v) because if F(x̂) �u
L F(v) then F(x̂) �u

L F(x), which
is a contradiction. Therefore, without loss of generality, we can assume that x ∈
MinL(A, F). Since F(x̂) ��u

L F(x), therefore there exists a point ŷ ∈ F(x̂) such that

ŷ /∈ F(x) − L. (3)

From the lower semicontinuity of F at x̂ , it follows that there exist ynk ∈ F(xnk ) such
that ynk → ŷ. By (2) together with the condition (1), it can be shown that ŷ ∈ F(x)−L
which contradicts (3). Hence, (PL,A) is LP well-posed in the set sense. ��
Remark 3.3 In example 3.1 (iii), F is not l.s.c. at x = 2. The other conditions of
Theorem 3.2 are satisfied and (PL,A) is not LP well-posed in the set sense. Therefore,
lower semicontinuity of F cannot be dropped in Theorem 3.2.

The following examples justify that Theorem3.2may not holdwithout compactness
of A, u-domination property of (PL,A) and condition (1).

Example 3.3 Let X = R, A = [0, 2) ⊆ R, Y = l2 and L = l2+ ⊆ l2. Consider
F : X ⇒ Y defined as

F(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2, 0, 0, . . .) − l2+, if x < 0,

(0, 5, 0, 0, . . .) − l2+, if 0 ≤ x ≤ 1,

{(xn) ∈ l2 : 0 < x1 ≤ 1}, if 1 < x < 2,

{(2, 4, 0, 0, . . .)}, if x = 2,

{(x − 2, 4, 0, 0, . . .)}, if x > 2.

Here, MinL(A, F) = [0, 1]. Clearly, A is not compact, while all other assumptions
in Theorem 3.2 hold. It is observed that (PL,A) is not LP well-posed in the set sense.
Indeed, if xn = 2+ 1

2n , vn = 1
n and εn = 1

n for all n ∈ N then (xn) is a LP minimizing
sequence for (PL,A) in the set sense but d(xn,MinL(A, F)) → 1.
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Example 3.4 Let X = R, A = [0, 2] ⊆ R, Y = R
2 and L = R

2+ ⊆ R
2. Consider

F : X ⇒ Y defined as

F(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[0, 1] × [0, 1], if 0 ≤ x ≤ 1,

(x, x − 1) − R
2+, if 1 < x < 2,

[1, 2] × [0, 1], if x = 2,

[1, x − 1] × [0, 1], if 2 < x < 3,

{(2, 2)}, otherwise.

We observe that MinL(A, F) = [0, 1] and all assumptions of Theorem 3.2 hold but
u-domination property is not satisfied. It can be seen that (PL,A) is not LP well-posed
in the set sense. Indeed, if xn = 2+ 1

2n , vn = 1
n and εn = 1

n for all n ∈ N then (xn) is
a LP minimizing sequence for (PL,A) in the set sense but d(xn,MinL(A, F)) → 1.

Example 3.5 Let X = R, A = [0, 2] ⊆ R, Y = R
2, dom F = [0, 3] and L = R

2+ ⊆
R
2. Consider F : X ⇒ Y defined as

F(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[0, 1] × [0, 1], if x = 0,

[0, 1 + x] × [0, 1 − x], if 0 < x < 1,

[0, 2] × {0}, if x = 1,

[1, 2] × [0, 1], if 1 < x ≤ 2,

[1, x − 1] × [0, 1], if 2 < x ≤ 3.

It is observed that MinL(A, F) = [0, 1]. Here, all assumptions of Theorem 3.2 are
satisfied but condition (1) for u = 0 and v = 1 and the conclusion of Theorem 3.2
fails to hold. Indeed, if xn = 2 + 1

2n , vn = 0 and εn = 1
n for all n ∈ N then (xn) is a

LP minimizing sequence for (PL,A) in the set sense but d(xn,MinL(A, F)) → 1.

Theorem 3.3 Suppose that MinL(A, F) is compact, F is closed on MinL(A, F) and
the problem (PL,A) is L P well-posed in the set sense. Then, for any LP minimizing
sequence (xn) for (PL,A) in the set sense there exists a subsequence (xnk ) of (xn) such
that Ls F(xnk ) ⊆ F(MinL(A, F)).

Proof Suppose that (xn) is any LP minimizing sequence for (PL,A) in the set sense.
As the problem (PL,A) is LP well-posed in the set sense, there exists a subsequence
(xnk ) of (xn) such that d(xnk ,MinL(A, F)) → 0. From the compactness of the set
MinL(A, F), it follows that (xnk ) has a subsequence which is again denoted by (xnk )
converging to x̂ ∈ MinL(A, F). If ŷ ∈ Ls F(xnk ) then there exist ynkl ∈ F(xnkl )
such that ynkl → ŷ. Using the closedness of F at x̂ , it follows that ŷ ∈ F(x̂) ⊆
F(MinL(A, F)). Hence, Ls F(xnk ) ⊆ F(MinL(A, F)). ��

We observe that the generalized LP well-posedness introduced in [16] assumes
that L has nonempty interior. In order to compare LP well-posedness in the set sense
defined in this paper with the well-posedness defined in [16], we also assume that L
has nonempty interior in the rest of this section.
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Khoshkhabar-amiranloo [16] defined a notion of generalized LP well-posedness
for (PL,A) using the lower set-relation with the assumption that intL is nonempty.
We recall the corresponding notion of the well-posedness for (PL,A) using the upper
set-relation.

Definition 3.5 [16] Let e ∈ intL . A sequence (xn) in X is said to be a generalized LP
minimizing sequence for (PL,A) if there exist a real sequence (εn), εn ≥ 0, εn → 0 and
a sequence (vn) in MinL(A, F) such that d(xn, A) ≤ εn and F(xn) �u

L F(vn) + εne.
The problem (PL,A) is said to be generalized LP well-posed if every generalized
LP minimizing sequence (xn) has a subsequence (xnk ) such that xnk → x̂ , for some
x̂ ∈ MinL(A, F).

In [16] it has been mentioned that the above Definition 3.5 is independent of the
choice of the vector e ∈ intL . But it is clear that this definition is still dependent on
the cone L . Here, we show that the Definition 3.5 does not depend on L at all.

Proposition 3.1 Let e ∈ intL. A sequence (xn) in X is a LP minimizing sequence for
(PL,A) in the set sense if and only if it is generalized LP minimizing sequence for
(PL,A).

Proof Suppose that (xn) is a LP minimizing sequence for (PL,A) in the set sense.
Then there exist εn ≥ 0, εn → 0 and a sequence (vn) ∈ MinL(A, F) such that
xn ∈ A + B(0, εn) and F(xn) ⊆ F(vn) + εn B̄ − L . Clearly, there always exists a
sequence (αn), αn ≥ 0, αn → 0 such that εn B̄ ⊆ αne − L which in turn implies that
(xn) is a generalized LP minimizing sequence for (PL,A).

Conversely, if (xn) is a generalized LP minimizing sequence for (PL,A), then there
exist εn ≥ 0, εn → 0 and a sequence (vn) ∈ MinL(A, F) such that d(xn, A) ≤ εn
and F(xn) �u

L F(vn) + εne. Let αn = ‖εne‖. Then αn ≥ 0, αn → 0 and εne ∈ αn B̄.
This implies that (xn) is a LP minimizing sequence for (PL,A) in the set sense. ��
Theorem 3.4 Suppose that e ∈ intL. If (PL,A) is generalized LP well-posed then it
is L P well-posed in the set sense. The converse hold only ifMinL(A, F) is compact.

Remark 3.4 The converse of Theorem 3.4 may not be true if MinL(A, F) is not com-
pact which can be verified by the following example.

Example 3.6 Let X = R, A = [−1, 1] ⊆ R, Y = R
2, L = R

2+ ⊆ R
2 and e = (1, 1).

Consider F : X ⇒ Y defined as

F(x) =
{

(0, 1) − R
2+, if 0 < x ≤ 1,

(1, 1) − R
2+, otherwise.

Here, MinL(A, F) = (0, 1]. Clearly, MinL(A, F) is not compact and the problem
(PL,A) is LP well-posed in the set sense but not generalized LP well-posed. Indeed,
if xn = 1/n, vn = 1/n and εn = 1/n for all n ∈ N then (xn) is a generalized LP
minimizing sequence for (PL,A) but every convergent subsequence of (xn) converges
to 0 /∈ MinL(A, F).
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4 LP well-posedness and approximate solutionmap

In this section, some characterizations of LP well-posedness for (PL,A) in terms of
closedness andHausdorff upper semicontinuity of the approximate solution set-valued
maps are given.

For this, we consider the following set-valued maps.
Define G : R+ × MinL(A, F) ⇒ X by

G(ε, v) = {x ∈ X : x ∈ A + B(0, ε), DF(v)−L(F(x)) ≤ ε},

where ε ≥ 0 and v ∈ MinL(A, F).
It follows from Lemma 2.2 that G(0, v) = argmin(A,DF(v)−L ◦ F) provided F is

(−L)-proper-valued and (−L)-closed-valued on MinL(A, F).
Define D : R+ ⇒ X by

D(ε) =
⋃

y∈MinL (A,F)

{x ∈ X : x ∈ A + B(0, ε), F(x) �u
L F(y) + ε B̄}, ε ∈ R+.

Here, D and D(ε) denote the approximate solution map and the set of approximate
solutions, respectively. We observe that D(0) ⊆ D(ε) for all ε > 0 and D(0) =
MinL(A, F).

Theorem 4.1 If the problem (PL,A) is L P well-posed in the scalar sense then G is
closed at (0, v) for every v ∈ MinL(A, F). The converse holds if F is (−L)-proper-
valued and (−L)-closed-valued onMinL(A, F), andMinL(A, F) and A are compact
sets.

Proof Let v ∈ MinL(A, F) be arbitrary. Let (εn, vn) ∈ R+ × MinL(A, F) such that
(εn, vn) → (0, v) and xn ∈ G(εn, vn) with xn → x . It follows that (xn) is a LP
minimizing sequence for (PL,A) with respect to (vn) in the scalar sense. As (PL,A) is
LP well-posed in the scalar sense, there exist subsequences (vnk ) of (vn) and (xnk )
of (xn) such that vnk → v̂ and xnk → x̂ where x̂ ∈ argmin(A,DF(v̂)−L ◦ F) which
further implies that v̂ = v and x̂ = x . Thus, x ∈ G(0, v) and so G is closed at (0, v).

Conversely, if (xn) is a LP minimizing sequence for (PL,A) with respect to (vn) ∈
MinL(A, F) in the scalar sense, then there exist εn ≥ 0, εn → 0 such that xn ∈
A+ B(0, εn) andDF(vn)−L(F(xn)) ≤ εn . This implies that xn ∈ G(εn, vn). On using
the compactness of the sets MinL(A, F) and A and closedness of G, we obtain that
there exist subsequences (vnk ) and (xnk ) such that vnk → v̂ and xnk → x̂ where
v̂ ∈ MinL(A, F) and x̂ ∈ G(0, v̂) = argmin(A,DF(v̂)−L ◦ F). Hence, (PL,A) is LP
well-posed in the scalar sense. ��

The proof of the following corollary follows by invoking Theorems 3.1 and 4.1.

Corollary 4.1 Suppose that MinL(A, F) is compact, F is (−L)-proper-valued and
(−L)-closed-valued on MinL(A, F). Then the following hold:

(i) If A is compact and G is closed at (0, v) for every v ∈ MinL(A, F) then (PL,A)

is L P well-posed in the set sense.
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(ii) If (PL,A) is L P well-posed in the set sense and F(u) ∼u F(v), for any u, v ∈
MinL(A, F) then G is closed at (0, v) for every v ∈ MinL(A, F).

Remark 4.1 The above two results of this section generalize Theorem 4.1 of [3] from
the vector-valued setting to set-valued setting.

Theorem 4.2 If D is H-u.s.c. at 0 then (PL,A) is L P well-posed in the set sense. The
converse holds ifMinL(A, F) is compact.

Proof If (xn) is a LP minimizing sequence for (PL,A) in the set sense, then there
exist εn ≥ 0, εn → 0 and vn ∈ MinL(A, F) such that xn ∈ A + B(0, εn) and
F(xn) �u

L F(vn) + εn B̄. Let ε > 0 be arbitrary. Since D is H-u.s.c. at 0, therefore
there exists a neighbourhood W of 0 such that D(α) ⊆ D(0) + B(0, ε) for all α ∈ W
and hence there exists m ∈ N such that D(εn) ⊆ D(0) + B(0, ε) for all n ≥ m.
This implies that xn ∈ D(0) + B(0, ε) for all n ≥ m which in turn implies that
d(xn,MinL(A, F)) → 0. Hence, (PL,A) is LP well-posed in the set sense.

Conversely, if D is not H-u.s.c. at 0 then there exists an ε > 0 such that for every
neighbourhood W of 0 there exists an α > 0 with D(α) � D(0) + B(0, ε). So, we
can find αn > 0, αn → 0 such that D(αn) � D(0) + B(0, ε). This implies that there
exist xn ∈ D(αn) such that

xn /∈ D(0) + B(0, ε). (4)

Thus, (xn) is a LP minimizing sequence for (PL,A) in the set sense. So, in this case
there exists a subsequence (xnk ) of (xn) such that d(xnk ,MinL(A, F)) → 0. Also,
MinL(A, F) being compact implies that there exist a subsequence (xnkl ) of (xnk ) and
x̂ ∈ MinL(A, F) = D(0) such that xnkl → x̂ . This implies that

x̂ ∈ D(0) + B(0, ε). (5)

It follows from (4) that xnkl ∈ (D(0) + B(0, ε))c which is closed and hence x̂ ∈
(D(0) + B(0, ε))c which contradicts (5). Hence, D is H-u.s.c. at 0. ��
Theorem 4.3 If (PL,A) is L P well-posed in the set sense andMinL(A, F) is compact
then D is closed at 0. Conversely, If D is closed at 0 and A is compact then (PL,A) is
L P well-posed in the set sense.

Proof Suppose that (PL,A) is LP well-posed in the set sense and (εn, xn) ∈ graph
D such that (εn, xn) → (0, x̂). It follows that (xn) is a LP minimizing sequence for
(PL,A) in the set sense. Therefore, there exists a subsequence (xnk ) of (xn) such that
d(xnk ,MinL(A, F)) → 0 which further implies that there exists a subsequence (xnkl )
of (xnk ) such that xnkl → ŷ for some ŷ ∈ MinL(A, F) = D(0). This implies that
x̂ ∈ D(0). Hence, D is closed at 0.

The converse follows on the similar lines as in the Theorem 3.3 of [16]. ��
The following example illustrates Theorems 4.2 and 4.3.
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Example 4.1 Let X = R, A = [0, 1] ⊆ R, Y = R, L = R+ ⊆ R. Consider
F : X ⇒ Y defined as

F(x) = [0, |x |], for all x ∈ X .

Here, MinL(A, F) = {0}. Clearly, A and MinL(A, F) are compact and hence all
assumptions of Theorems 4.2 and 4.3 hold. We observe that (PL,A) is LP well-posed
in the set sense and

D(ε) =
{

{0}, if ε = 0,

(−ε, ε), if ε > 0.

It can be seen that D is H-u.s.c. and closed at ε = 0.

5 Stability aspects of (PL,A)

In this section, firstly we discuss the upper part of the Painlevé-Kuratowski conver-
gence of a sequence of minimal solution sets of scalar problems which are defined by
using generalized oriented distance function introduced in [27]. Secondly, we estab-
lish the upper part of the Painlevé-Kuratowski convergence of the solution sets of a
sequence of perturbed set optimization problems where perturbations are obtained by
perturbing the ordering cone and the feasible set.

Theorem 5.1 Suppose that (PL,A) is L P well-posed in the scalar sense and (vn) is
any sequence inMinL(A, F) such that vn → v ∈ MinL(A, F). Then,

Ls argmin(A,DF(vn)−L ◦ F) ⊆ argmin(A,DF(v)−L ◦ F).

Proof Let x ∈ Ls argmin(A,DF(vn)−L ◦ F). This implies that there exist xnk ∈
argmin(A,DF(vnk )−L ◦ F) such that xnk → x which further implies that
DF(vnk )−L(F(xnk )) = 0. It follows that (xnk ) is a LP minimizing sequence for
(PL,A) with respect to (vnk ) in the scalar sense. Therefore, there exist subse-
quences (vnkl

) of (vnk ) and (xnkl ) of (xnk ) such that vnkl
→ v̂ and xnkl → x̂ ∈

argmin(A,DF(v̂)−L ◦ F). As vnk → v and xnk → x , we obtain that v̂ = v and
x̂ = x . Thus, x ∈ argmin(A,DF(v)−L ◦ F). Hence, Ls argmin(A,DF(vn)−L ◦ F) ⊆
argmin(A,DF(v)−L ◦ F). ��
Corollary 5.1 Suppose that the problem (PL,A) is L P well-posed in the scalar sense,
(vn) ∈ MinL(A, F) is any sequence such that vn → v ∈ MinL(A, F) and F(v) is
(−L)-proper and (−L)-closed. Then,

Ls argmin(A,DF(vn)−L ◦ F) ⊆ MinL(A, F).

Remark 5.1 Theorem 5.1 generalizes Theorem 5.1 of [3] from vector case to the set
case.
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In the rest of the paper, the interior of the ordering cone L is assumed to be nonempty.
We now investigate some stability aspects of the problem (PL,A) by first perturbing
the ordering cone L and then perturbing both the ordering cone L and the feasible set
A.

We consider the following strict upper set-relation on P(Y ) [17].

M ≺u
L N ⇔ M ⊆ N − intL, for M, N ∈ P(Y ).

Kuroiwa [17] defined u-weak minimal solutions of the problem (PL,A) using the
above relation.

Definition 5.1 [17] An element x̂ ∈ A is called a u-weak minimal solution of (PL,A)
if there does not exist any x ∈ A such that F(x) ≺u

L F(x̂). The set of all u-weak
minimal solutions of (PL,A) are denoted by WMinL(A, F).

We observe that MinL(A, F) ⊆ WMinL(A, F) as pointed by Han and Huang [9].
Also, the reverse inclusion has been proved in [9] by using strictly upper L-convexity
defined as follows:

Definition 5.2 [9] Let S be a nonempty convex set in X . The set-valued map F is
called strictly upper L-convex on S if, for any x1, x2 ∈ S, x1 �= x2 and for any
0 < λ < 1, we have

F(λx1 + (1 − λ)x2) ⊆ λF(x1) + (1 − λ)F(x2) − intL.

Lemma 5.1 [9] Suppose that A is a convex set and F is strictly upper L-convex on the
set A with nonempty convex compact values. Then MinL(A, F) = WMinL(A, F).

We next discuss the stability of (PL,A) by considering the following sequence of
perturbed problems where the ordering cone L is perturbed.

(PLn ,A) minLn F(x)

subject to x ∈ A

where Ln is convex closed cone in Y with intLn �= ∅. The sets of u minimal solu-
tions and u-weak minimal solutions of (PLn ,A) are denoted by MinLn (A, F) and
WMinLn (A, F), respectively.

For the perturbed problems (PLn ,A), we use the following form of Lemma 5.1.

Lemma 5.2 Suppose that A is a convex set and F is strictly upper Ln-convex on the
set A with nonempty convex compact values. Then MinLn (A, F) = WMinLn (A, F).

Theorem 5.2 Suppose that (Ln) is a sequence of convex closed cone in Y such
that Ls (intLn)

c ⊆ (intL)c. If F is compact-valued and l.s.c. on A then
Ls WMinLn (A, F) ⊆ WMinL(A, F).
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Proof Let x̂ ∈ Ls WMinLn (A, F). Then there exist xnk ∈ WMinLnk
(A, F) such

that xnk → x̂ . If x̂ /∈ WMinL(A, F) then there exists a point x ∈ A such that
F(x) ≺u

L F(x̂) which further implies that

F(x) ⊆ F(x̂) − intL. (6)

Since xnk ∈ WMinLnk
(A, F), therefore F(x) � F(xnk ) − intLnk for all k ∈ N which

further implies that there exist ynk ∈ F(x) such that

ynk /∈ F(xnk ) − intLnk . (7)

As F(x) is compact, there exists a subsequence (ynkl ) of (ynk ) such that ynkl → y for
some y ∈ F(x). Using (6), we obtain that y ∈ ŷ − intL for some ŷ ∈ F(x̂) which in
turn implies that

y − ŷ ∈ −intL. (8)

As F is l.s.c. at x̂ , there exist znkl ∈ F(xnkl ) such that znkl → ŷ. It follows from (7) that
ynkl − znkl ∈ (−intLnkl

)c which means that y− ŷ ∈ (−intL)c which is a contradiction
to (8). Therefore, x̂ ∈ WMinL(A, F) and henceLs WMinLn (A, F) ⊆ WMinL(A, F).

��
The following corollary can be proved on using Lemmas 5.1, 5.2 and Theorem 5.2.

Corollary 5.2 Suppose that A is a convex set and (Ln) is a sequence of convex closed
cone in Y such that Ls (intLn)

c ⊆ (intL)c. If F is compact-valued and l.s.c. on A,
and F is strictly upper L-convex and Ln-convex on the set A with nonempty convex
compact values then Ls MinLn (A, F) ⊆ MinL(A, F).

The following example illustrates Theorem 5.2.

Example 5.1 Let X = R, A = [0, 1] ⊆ R, Y = R
2, L = R

2+ ⊆ R
2, Ln ={

(x, y) : x − y
2n ≥ 0 and y − x

2n ≥ 0
} ⊆ R

2. Consider F : A ⇒ Y defined as

F(x) =
{

[0, 1] × [0, 1], if x �= 0,

{(1, 1)}, if x = 0.

Here, all assumptions of Theorem 5.2 hold. We observe that WMinL(A, F) = [0, 1],
WMinLn (A, F) = [0, 1]. Clearly, Ls WMinLn (A, F) ⊆ WMinL(A, F).

The next example illustrates that if F is not compact-valued then Theorem 5.2 may
fails to hold.

Example 5.2 Let X = R, A = [0, 1] ⊆ R, Y = R
2, L = R

2+ ⊆ R
2, Ln ={

(x, y) : x − y
2n ≥ 0 and y − x

2n ≥ 0
} ⊆ R

2. Consider F : A ⇒ Y defined as

F(x) =
{

(0, 1) × (0, 1), if x �= 0,

{(1, 1)}, if x = 0.
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Here,WMinL(A, F) = {0},WMinLn (A, F) = [0, 1] and all assumptions of Theorem
5.2 hold but F is not compact-valued on A. Clearly, 1 ∈ Ls WMinLn (A, F) but
1 /∈ WMinL(A, F). Hence, Ls WMinLn (A, F) � WMinL(A, F).

In the last, we discuss the stability of (PL,A) by considering the following sequence
of perturbed problems where both the ordering cone L and the feasible set A are
perturbed.

(PLn ,An ) minLn F(x)

subject to x ∈ An

where Ln is convex closed ordering cone in Y with intLn �= ∅ and An is a nonempty
set in X . The sets of u-weak minimal solutions and u-minimal solutions of (PLn ,An )

are denoted by WMinLn (An, F) and MinLn (An, F), respectively.
For the perturbed problems (PLn ,An ), Lemma 5.1 reduces to the following lemma.

Lemma 5.3 Suppose that An is convex and F is strictly upper Ln-convex on An with
nonempty convex compact values. ThenMinLn (An, F) = WMinLn (An, F).

Theorem 5.3 Suppose that (Ln) is a sequence of convex closed cone in Y such that
Ls (intLn)

c ⊆ (intL)c, (An) is a sequence of nonempty sets in X such that A ⊆ Li An.
If F is compact-valued and u.s.c on A, and l.s.c. on X then Ls WMinLn (An, F) ⊆
WMinL(A, F).

Proof Let x̂ ∈ Ls WMinLn (An, F). Then there exist xnk ∈ WMinLnk
(Ank , F) such

that xnk → x̂ . If x̂ /∈ WMinL(A, F) then there exists x ∈ A such that F(x) ⊆ F(x̂)−
intL . As x ∈ A, it follows that x ∈ Li An which further implies that there existwn ∈ An

such that wn → x . Since xnk ∈ WMinLnk
(Ank , F), therefore F(wnk ) � F(xnk ) −

intLnk which means that there exist ynk ∈ F(wnk ) such that ynk /∈ F(xnk ) − intLnk .
As F is u.s.c. at x , there exist y ∈ F(x) and a subsequence (ynkl ) of (ynk ) such that
ynkl → y. Now, the proof follows on the lines of Theorem 5.2. ��

By invoking Lemmas 5.1, 5.3 and Theorem 5.3, the following corollary can be
easily proved.

Corollary 5.3 Suppose that (An) is a sequence of convex sets in X such that A ⊆ Li An

where A ⊆ X is also convex and (Ln) is a sequence of convex closed cone in Y such
that Ls (intLn)

c ⊆ (intL)c. If F is compact-valued and u.s.c. on A, l.s.c. on X, strictly
upper L-convex and Ln-convex on the set A and An, respectivelywith nonempty convex
compact values then Ls MinLn (An, F) ⊆ MinL(A, F).

The following example illustrates Theorem 5.3.

Example 5.3 Let X = R, A = [0, 1] ⊆ R, An = [0, 1 + 1/n] ⊆ R, Y = R
2, L =

R
2+ ⊆ R

2, Ln = {
(x, y) : x − y

2n ≥ 0 and y − x
2n ≥ 0

} ⊆ R
2. Consider F : X ⇒ Y

defined as

F(x) = Co {(0, 0), (x, (1 − x)), (x, x − 1)}, for all x ∈ X ,
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where Co S denotes the convex hull of a set S. Here, all assumptions of Theorem
5.2 are satisfied. It is observed that WMinL(A, F) = [0, 1], WMinLn (An, F) =[
0, 1 − 1

n

) ∪ (
1, 1 + 1

n

]
. Clearly, Ls WMinLn (An, F) ⊆ WMinL(A, F).

The next example justifies that Theorem 5.3 may not hold if F is not compact-
valued.

Example 5.4 Let X = R, A = [0, 1] ⊆ R, An = [−1/n, 1] ⊆ R, Y = R
2, dom F =

(−∞, 1], L = R
2+ ⊆ R

2, Ln = {
(x, y) : x − y

2n ≥ 0 and y − x
2n ≥ 0

} ⊆ R
2. Con-

sider F : X ⇒ Y defined as

F(x) =

⎧
⎪⎨

⎪⎩

Co {(x, 0), (2, 1), (2,−2)}, if x < 0,

int(Co {(0, 0), (x, 0), (x, x − 1)}), if 0 ≤ x < 1,

[(0, 0), (1, 0)], if x = 1.

We observe that WMinL(A, F) = {1}, WMinLn (An, F) = {−1/n}. Clearly, F is
not compact-valued on A, while all other assumptions in Theorem 5.2 hold. It can be
seen that 0 ∈ Ls WMinLn (An, F) but 0 /∈ WMinL(A, F). Hence, the conclusion of
Theorem 5.3 fails to hold.
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